Source code for qci_client.optimization.data_converter
- """Functions for data conversion."""
- import logging
- import time
- import networkx as nx
- import numpy as np
- import scipy.sparse as sp
- from qci_client.optimization import utilities
- from qci_client.optimization import enum
- MEMORY_MAX: int = 8 * 1000000
- [docs]
- def data_to_json(*, file: dict) -> dict:
- """
- Converts data in file input into JSON-serializable dictionary that can be passed to Qatalyst REST API
- Args:
- file: file dictionary whose data of type numpy.ndarray, scipy.sparse.spmatrix, or networkx.Graph is to be converted
- Returns:
- file dictionary with JSON-serializable data
- """
- start_time_s = time.perf_counter()
- file_config, file_type = utilities.get_file_config(file=file)
- if file_type not in enum.FILE_TYPES_JOB_INPUTS:
- input_file_types = [
- input_file_type.value for input_file_type in enum.FILE_TYPES_JOB_INPUTS
- ]
- input_file_types.sort()
- raise AssertionError(
- f"unsupported file type, must be one of {input_file_types}"
- )
- data = file["file_config"][file_type.value]["data"]
- if file_type == enum.FileType.GRAPH:
- if not isinstance(data, nx.Graph):
- raise AssertionError(
- f"file type '{file_type.value}' data must be type networkx.Graph"
- )
- file_config = {
- **nx.node_link_data(data),
- "num_edges": data.number_of_edges(),
- "num_nodes": data.number_of_nodes(),
- }
- elif file_type in enum.FILE_TYPES_JOB_INPUTS_MATRIX:
- if isinstance(data, nx.Graph):
- raise AssertionError(
- f"file type '{file_type.value}' does not support networkx.Graph data"
- )
- data_ls = []
- if sp.isspmatrix_dok(data):
- for idx, val in zip(data.keys(), data.values()):
-
-
- data_ls.append({"i": int(idx[0]), "j": int(idx[1]), "val": float(val)})
- elif sp.isspmatrix(data) or isinstance(data, np.ndarray):
- data = sp.coo_matrix(data)
- for i, j, val in zip(
- data.row.tolist(), data.col.tolist(), data.data.tolist()
- ):
- data_ls.append({"i": i, "j": j, "val": val})
- else:
- raise ValueError(
- f"file type '{file_type.value}' only supports numpy.ndarray and "
- f"scipy.sparse.spmatrix data types, got '{type(data)}'"
- )
- file_config = {"data": data_ls}
- rows, cols = data.get_shape()
- if file_type == enum.FileType.CONSTRAINTS:
-
- file_config.update({"num_constraints": rows, "num_variables": cols - 1})
- else:
-
- file_config["num_variables"] = rows
- else:
-
- file_config = file["file_config"][file_type.value]
- logging.debug(
- "Time to convert data to json: %s s.", time.perf_counter() - start_time_s
- )
- return {
- "file_name": file.get("file_name", f"{file_type.value}.json"),
- "file_config": {file_type.value: file_config},
- }