Source code for eqc_models.assignment.resource
- from typing import (Dict, List)
- import numpy as np
- from eqc_models.base.quadratic import ConstrainedQuadraticModel
- from eqc_models.base.constraints import InequalitiesMixin
- [docs]
- class ResourceAssignmentModel(InequalitiesMixin, ConstrainedQuadraticModel):
- """
- Resource assignment model
- Parameters
- ------------
- resources : List
- tasks : List
-
- >>> # name is not a required attribute of the resources or tasks
- >>> crews = [{"name": "Maintenance Crew 1", "skills": ["A", "F"], "capacity": 5, "cost": 4},
- ... {"name": "Baggage Crew 1", "skills": ["B"], "capacity": 4, "cost": 1},
- ... {"name": "Maintenance Crew 2", "skills": ["A", "F"], "capacity": 5, "cost": 2}]
- >>> tasks = [{"name": "Refuel", "skill_need": "F", "load": 3},
- ... {"name": "Baggage", "skill_need": "B", "load": 1}]
- >>> model = ResourceAssignmentModel(crews, tasks)
- >>> assignments = model.createAssignmentVars()
- >>> assignments
- [{'resource': 0, 'task': 0}, {'resource': 1, 'task': 1}, {'resource': 2, 'task': 0}]
- >>> A, b, senses = model.constrainAssignments(assignments)
- >>> A
- array([[3., 0., 0.],
- [0., 1., 0.],
- [0., 0., 3.],
- [3., 0., 3.],
- [0., 3., 0.]], dtype=float32)
- >>> b
- array([5., 4., 5., 3., 3.], dtype=float32)
- >>> senses
- ['LE', 'LE', 'LE', 'EQ', 'EQ']
- >>> A, b = model.constraints
- >>> A
- array([[3., 0., 0., 1., 0., 0.],
- [0., 1., 0., 0., 1., 0.],
- [0., 0., 3., 0., 0., 1.],
- [3., 0., 3., 0., 0., 0.],
- [0., 3., 0., 0., 0., 0.]])
- """
- def __init__(self, resources, tasks):
- self.resources = resources
- self.checkTasks(tasks)
- self.tasks = tasks
- self.assignments = assignments = self.createAssignmentVars()
- n = len(assignments) + len(resources)
- self.variables = [f"a{i}" for i in range(len(assignments))]
- self.upper_bound = np.ones((n,))
- self.upper_bound[-len(resources):] = [resource["capacity"] for resource in resources]
- A, b, senses = self.constrainAssignments(assignments)
- J = np.zeros((n, n))
- C = np.zeros((n,), dtype=np.float32)
-
- for j, assignment in enumerate(assignments):
- C[j] = resources[assignment["resource"]]["cost"] * tasks[assignment["task"]]["load"]
- super(ResourceAssignmentModel, self).__init__(C, J, A, b)
- self.senses = senses
-
- self.machine_slacks = 1
- [docs]
- @classmethod
- def checkTasks(cls, tasks):
- for task in tasks:
- if "skill_need" not in task:
- raise ValueError("All tasks must have the skill_need attribute")
- if "load" not in task:
- raise ValueError("All tasks must have the load attribute")
- [docs]
- def createAssignmentVars(self):
- """ Examine all combinatins of possible crew-task assignments """
- assign_vars = []
- resources = self.resources
- tasks = self.tasks
- for i, resource in enumerate(resources):
- skills = resource["skills"]
- for j, task in enumerate(tasks):
- if task["skill_need"] in skills:
- assign_vars.append({"resource": i, "task": j})
- return assign_vars
- [docs]
- def constrainAssignments(self, assignments : List) -> List:
- """
- Examine the assignments to determine the necessary constraints to
- ensure feasibility of solution.
- """
-
- m1 = len(self.resources)
- m2 = len(self.tasks)
- n1 = len(assignments)
- m = m1 + m2
- n = n1
- A = np.zeros((m, n), dtype=np.float32)
- b = np.zeros((m,), dtype=np.float32)
- for i, resource in enumerate(self.resources):
- b[i] = resource["capacity"]
- for k, assignment in enumerate(assignments):
- if assignment["resource"] == i:
- A[i, k] = self.tasks[assignment["task"]]["load"]
- assignment_coeff = np.max(A)
- for i, task in enumerate(self.tasks):
- b[m1+i] = assignment_coeff
- for k, assignment in enumerate(assignments):
- if assignment["task"] == i:
- A[m1+i, k] = assignment_coeff
- senses = ["LE" for resource in self.resources] + ["EQ" for task in self.tasks]
- return A, b, senses
- @property
- def sum_constraint(self) -> int:
- """ This value is a suggestion which should be used with a machine slack """
- sc = 0
- sc += sum([resource["capacity"] for resource in self.resources])
- sc += len(self.tasks)
- return sc
- [docs]
- def decode(self, solution : np.array) -> List[Dict]:
- """
- Convert the binary solution into a list of tasks
- """
-
- solution = np.array(solution)
- resource_assignments = [[] for resource in self.resources]
- vals = [val for val in set(solution) if val <= 1.0]
-
- if solution[~np.logical_or(solution==0, solution>=1)].size>0:
-
-
- remaining_tasks = list(range(len(self.tasks)))
- fltr = self.upper_bound==1
- while len(remaining_tasks) > 0 and solution[fltr].shape[0]>0:
- largest = np.max(solution[fltr])
- indices, = np.where(np.logical_and(fltr, solution == largest))
- for idx in indices:
- assignment = self.assignments[idx]
- if assignment["task"] in remaining_tasks:
- task = self.tasks[assignment["task"]]
- resource_assignments[assignment["resource"]].append(task)
- del remaining_tasks[remaining_tasks.index(assignment["task"])]
- break
- fltr = np.logical_and(fltr, solution < largest)
- else:
-
- for j, task in enumerate(self.tasks):
- highest = 0
- best_resource = None
- for a, assignment in zip(solution, self.assignments):
- if assignment["task"] == j:
- if a > highest:
- highest = a
- best_resource = assignment["resource"]
- assert best_resource is not None, f"solution had no positive assignment values for {task}"
- resource_assignments[best_resource].append(task)
- return resource_assignments